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The complete statistical behavior of the random gain of a photomultiplier tube (PMT)
has not previously yielded to exact analysis. In this paper a Markov diffusion model is
used to determine an approximate probability density for the random gain. This approxi-
mate density preserves the correct second-order statistics and appears to be in reasonably
good agreement with previously reported experimental data. The receiver operating curve
for a pulse counter detector of PMT cathiode emission events is analyzed using this
density. The error performance of a simple binary direct detection optical communica-

tion system is also derived.

l. Introduction

The photomultiplier tube (PMT) is an optical energy detec-
tor which has high enough internal gain to provide adequate
output signal levels at low light levels. Electrons that are
emitted at the cathode of a PMT are directed through a series
of dynodes by an applied electric field. A single electron
emitted at the cathode causes a number of secondary electrons
to be emitted at the first dynode. These secondary electrons
from the first dynode are in turn directed to a second dynode
where this multiplication process is repeated for each imping-
ing electron. This electron multiplication process is repeated
through a series of several dynodes until the electrons from the
last dynode are collected at the PMT anode, with the resulting
anode current being the PMT output.

The PMT gair is defined to be the total number of electrons
collected at the anode as a result of a single electron emission
event at the cathode. Since the number of secondary electron

emissions at a dynode for each primary impinging electron is a
random quantity, the overall PMT gain is a random variable.
Thus the PMT output current signal resulting from a single
electron emission event at the cathode is also random in
nature.

In optical communications, direct detection receivers
employ photodstectors with internal gain such as PMTs in low
light level situations to overcome thermal noise in the amplifi-
cation stages following the PMT. The probability distribution
of the random PMT gain is then required to determine error
performance in systems that use a PMT detector. It is well
known (Refs. 1,2) that the random electron multiplication
process can be modelled by a Galton-Watson branching process
(Ref. 3). Although the mean and variance of the gain can be
readily determined using the branching process model, the
problem of determining an explicit expression for its probabil-
ity distribution appears to be intractable. An approach to
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circumvent this intractable problem is to obtain an accurate
approximation of the probability distribution of the PMT gain.
This approximate distribution can then be used to evaluate the
error performance of the direct detection digital communica-
tion system.

Feller (Ref. 4) was the first to suggest the use of a Markov
diffusion process approximation to analyze the statistical
behavior of a Galton-Watson branching process. As is well
known, the Galton-Watson branching process is a discrete-time
discrete-state Markov process that can be specified by its
conditional state transition probability distribution. On the
other hand, the diffusion process is a continuous-time
continuous-state Markov process whose incremental state
transition statistics are specified by conditional incremental
mean and variance parameters called the infinitesimal mean
and variance, respectively. Feller’s approach is to use a diffu-
sion process approximation whose infinitesimal mean and vari-
ance parameters simulate the mean and variance respectively
of the branching process conditional state transition distribu-
tion. Thus the second-order incremental state transition statis-
tics of the diffusion approximation are similar to those of the
original branching process.

In this paper we employ Feller’s approach to obtain a
Markov diffusion process approximation of the PMT gain
branching process. The resulting diffusion process then has a
marginal probability density which is obtained by solving a
Fokker-Planck partial differential equation. This density can
then be regarded as an approximate density for the PMT gain.
This approximate density of course yields the true mean and
variance of the PMT gain. Moreover, the general shape of the
approximate density appears to be in good agreement with
experimental PMT gain data reported in the literature (Ref. 5).

The number of electrons emitted at the PMT cathode is also
random in nature and can be assumed to be Poisson distributed.
Thus the random nature of the number of electrons collected
at the anode is a result of both the random electron emission
process at the cathode and the random PMT gain. It is the
probability distribution of the number of PMT anode electrons
that is required for evaluating communication system error
performance. In order to determine an explicit expression for
this distribution, the distribution of the gain is again required.
Hence the problem of determining an explicit expression for
the distribution of the number of PMT anode electrons
appears to be also intractable. In this paper we obtain an
approximate density for the number of anode electrons by
using the approximate density for the gain random variable
derived from the diffusion approximation.

The number of PMT cathode electron emission events is
often monitored by using a pulse counter. It is interesting to
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determine the effect of the random PMT gain, thermal noise in
the PMT output amplifier and the counter response time on
successful cathode electron emission event detection. The
receiver operating curve of this detection process is determined
in this paper using the derived approximate PMT gain
distribution.

Finally we analyze the error performance of a direct detec-
tion communication system with a PMT detector and an
on-off binary signalling scheme. Here the laser transmitter light
source is either on or off in a binary symbol time. We consider
a simple receiver which integrates the PMT amplifier output
over the symbol time period and compares the result to a
threshold. Detection of the laser light is then declared if and
only if the threshold is exceeded. The error performance of
this system is analyzed, taking into account the random PMT
gain and the thermal noise in the PMT output amplifier.

This paper is organized as follows. Section II describes the
branching process model of the PMT gain and the diffusion
approximation. Section III considers the detection perfor-
mance of pulse counter monitoring of PMT cathode emission
events using the approximate PMT gain density obtained in
Section II. Section IV derives the approximate density of the
number of electrons collected at the PMT anode for Poisson
distributed cathode electron emissions. This density is then
used to evaluate the error performance of the binary on-off
direct detection communication system.

il. Branching Process Model and the
Diffusion Approximation

A. Branching Process Model for the PMT Gain

A primary impinging electron at a dynode causes a random
number of secondary electrons. In this paper it is assumed that
the number of secondary electrons generated per primary
electron is Poisson distributed with mean u, where

M = average gain per dynode stage.

Moreover, it is assumed that the average gain of each dynode
stage is identical. The Poisson assumption can be regarded as
being valid when the physical nonuniformities across the
dynode surfaces are small (Refs. 6, 7). In the dynode electron
multiplication process it can be assumed that the secondary
electron emission process operates on each individual primary
electron in a statistically independent manner (Refs. 1, 2, 5,
6, 7). Hence the number of secondary electrons resulting from
different primary electrons are independent random variables.
This independence assumption leads directly to a branching




process model for the overall PMT gain. Specifically for & = 1
let

S, = total number of electrons emitted by the kth dynode.

Moreover, define

Sy =1

i

number of electrons emitted by the cathode,

and

Q
]

total number of electrons collected at the anode as a
result of a single electron emission at the cathode

PMT gain.
Then for a PMT with v dynode stages,

G=35 . ¢Y)

v

Also, we have, under the above assumptions,
S, = DN, k>1, )

where {Ny;, k> 1, i > 1} are independent Poisson random
variables each w1th mean . The process {S, :k = O}is known
as a Galton-Watson branching process (Ref. 3). The second-
order statistics of S, can be shown (Ref. 3, p. 6) to be given
by

E15,] = " ®)
Var(S,) = % 4

where u # 1. Thus from (1) and (3), a PMT with » dynode
stages has average gain

lll>

G = E[G] = . (5)
A typical PMT such as the RCA C31034 has v = 11 dynode
stages with G = 108. Hence u = 3.51 here. In this case it can be
seen from (4) that the standard deviation of the gain G is
roughly half of the average gain G. Hence the distribution of G
can be expected to be quite widely spread about its mean. This

is the situation with many PMTs where the standard deviation
of the gain is of the same order of magnitude as its mean.

In branching process theory, the probability generatmg
function (pgf) of AP

[ = E [zS"] ©
can be shown (Ref. 3, p. 5] to be given by
f(2) =g@(---g@):), (7
———TT T
k times

where

g) = E [sz"]

eh(z=1) ®)

is the pgf of the Poisson random variable V,; with mean u. So
in view of (1), the pgf of the PMT gain can be explicitly
determined using (7). However, it is not possible to invert the
pef analytically to obtain the distribution of the gain because
the number of dynode stages is usually sufficiently large to
render that problem intractable. Thus the problem of deter-
mining an explicit expression for the probability distribution
of the gain G appears to be intractable.

B. Diffusion Approximation

A viable alternative is to attempt to obtain an accurate
approximation of the PMT gain probability distribution, We
propose to accomplish this goal by using a diffusion approxi-
mation of the branching process gain model. Diffusion approx-
imations have previously been successfully employed in many
stochastic process problems such as in the analysis of queuing
systems (Ref. 8). Feller (Ref. 4) was the first to suggest the use
of diffusion approximations to analyze branching processes.
We apply Feller’s approach to obtain an approximate distri-
bution for the PMT gain as follows. Let S(¢) be a diffusion
process satisfying the Ito differential equation (Ref. 9):

dS(r) = B(S(r), t)dt +a(S(t), t)aw (),  (9)
where W(¢) is a Wiener process with zero mean and variance ¢.
Here § is the infinitesimal mean or drift and e is the infinitesi-
mal variance of S(¢). That is, for small A¢,

E[S(t+At)- S@ISE) = x] =8(x,t) Ar, (10)

Var [S(t+ At)- S@)ISE) = x] =alx, ) A, (11)

57




Since the PMT gain G, which is usually of the order of 109, is
large, we can represent it as a continuous random variable. Let
us now approximate the branching processing gain model {S;}
given by (2) by the continuous-state continuous-time diffusion
process S(¢). Moreover, this approximation shall be made so
that the infinitesimal parameters (10) and (11) of S(¢) possess
the same behavior of the corresponding incremental mean and
variance of ;.. Note from (2) that

E S, = SISy

=n] =n(u-1) (12)

k+1

Var [S, ., = S 1S, = nl = nu 13)

are both proportional to the population size S, = n of elec-
trons emitted by the kth dynode. Thus, in order to preserve
this behavior, we should set the infinitesimal parameters

1

Blx, 1) = Bx, (14)

alx, 1) = ax, 15
to also linearly increase with population size x. We shall not at
this time specify the constants o and § in view of the differ-

ence in time scales between the processes S, and S(¢). Let
p(x, t) = marginal probability density of S(¢) .
Then it follows from (14) and (15) and a wellknown result

(Ref. 9) on diffusions that p(x, f) satisfies the following
Fokker-Planck equation.:

2
ap(;ft, 2 =%°‘ ‘a%; [xp(x,2)] - B 5%— [xpCx, )],
(16)
p(,0 =6(x-1). )

The solution p(x, ¢) of (16) and (17) can be obtained as
follows. Instead of solving for p(x, ¢) directly, consider its
moment generating function (mgf)

o, 1) = E [eSP] = f ™% pe 1) dx

A technique (Ref. 10, p. 83) for transforming Fokker-Planck
equations then obtains the following equations for ¢(u, 7)
from (16) and (17):

300, 1) _ (ﬁ 1 2) de(u, £)

"
at au ou ’

5 (18)
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$(u,0) = e (19
The solution of (18) and (19) can be shown to be
o, t) = exp [%] , (20)
where
A =P (1)
B =§%(e - 1). (22)

Finally (20) is inverted to recover p(x, f) as follows. First

rewrite (20) as
—A/B A/B
e eXp | T3 g

o~AIB (A/B)" 1
E (1 +Bu)*

¢, 1)

(23)

Next note that 1/(1 + Bu)” is the mgf of the Gamma den-

sity:
1 _ J-oo e_-ux [B n n 1 —-x/B] dx .
(1 + Bu)" o n- !

So (23) and (24) yield

(24)

- ,~A/B -4/B (4/B2)" "1 e7*
plx,t) = e d(x)te n2=1 nl(n - 1))
—x/B /
e—A/B 6(x) + A/x 22/ Ax , (25)
B L{™s
for x > 0, where I, is the modified Bessel function of the first

kind. Finally, we want to choose the parameters 4 and B so
that S(z) represents the gain G =S, of a v-stage PMT with
average gain G. In particular, A and B are chosen so that the
respective means and variances of G and S(z) are equal. It
follows from (1), (4) and (5) that

E[G] = (26)
varfg] = 21 @7
N




Also, from (23) we have

Els@)] = - 2D 4,
u=0
Var[S()] = ¥ow 9 -A4? (28)
au2 u=0
= 24B (29)

So in order that G and S5(¢) have the same second-order
statistics, we require

A4 =G, (30)

1{ G-1
B=__ — e,
2("\/'@?? )

So we can conclude that an approximate probability density
p(x) of the gain G of a PMT with average gain G and »
dynode stages is given by

@D

o—AIB [6(X) + e_xlB;/Z%? I, (2 \gﬁ ):| , x>0
psx) =
0 , x<0
(32)
where A and B are given by (30) and (31)

Let us consider the appropriateness of this approximate
density (32). First, it is clear from (26) — (31) that (32) yields
the correct mean and variance for G. It is also known (Ref. 3,
pp. 13-16) that S,/u" converges to a nonnegative random
variable W with probability one as # tends to infinity. More-
over, the distribution of this limiting random variable W has a
point mass at O (delta function at 0) and is absolutely contin-
uous (has a density) elsewhere. Thus the structural form of
p(x) appears to be correct for PMTs with a large number of
dynodes. As another indication of the appropriateness of (32),
we note from (7) that

PG = 0) =P(SV = 0)
= g(g(--80)-), (33)
v times

where g is given by (8). On the other hand (32) gives

P(G=0)e4/B (34)

with 4 and B given by (30) and (31). For the RCA 31034
PMT with »=11 dynodes, (33) yields 3.36 X10"2 and
1.4 X 1072 for P(G =0) when G = 106 and 107 respectively,
whereas (34) yields 6.6 X 1073 and 1.3 X 10-3. Thus (32)
also gives a fairly reasonable approximation of P(G = 0).

The 11-dynode RCA 31034 PMT has usable average gain G
in a range from 105 to over 107. Figures 1 and 2 show the
approximate density (32) normalized to give a density for G/G
for G =106 and 107. As can be seen from these figures, the
density is not symmetric about the mean and in fact peaks at a
point below the mean value. Also there is considerable proba-
bility mass below the mean. These properties appear to be in
good agreement with experimental PMT gain data reported in
the literature (Ref. 5). In particular, the asymmetric nature of
the density (32) appears in the experimental results. Also
shown in these figures are corresponding density functions
which are positive truncations of the Gaussian density with the
same mean and variance as G. The truncated Gaussian approxi-
mation is sometimes used (Ref. 11) to simplify the analysis of
systems using PMTs. However, the simpler truncated Gaussian
approximation has a mean larger than G and substantially
more probability mass above the mean than (32). Hence, using
the Gaussian approximation to analyze communication system
performance could produce overly optimistic results.

Itl. Pulse Counter Detection of
Cathode Emissions

In many PMT experiments such as determining the dark
current, cathode emission event data is required. The cathode
emission events are usually recorded by monitoring the PMT
output with a pulse counter. In this section the effect of the
random PMT gain, thermal noise in the PMT output amplifier
and the counter response time on successful emission event
detection is determined. We shall derive the probability of
successful emission event detection and the probability of false
alarm to obtain the receiver operating curve for this detection
process.

Suppose a single electron is emitted at the PMT cathode.
Denote e = electron charge = 1.6 X 1071° coulombs, W, =
PMT bandwidth and Tp =1/ Wp = PMT response time. Then a
current pulse of GeW,, amps is generated at the PMT anode as
a result of this single electron emission. Suppose the anode is
terminated with resistance R. Then the voltage pulse signal
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S(2) across the resistor can be represented as

S@) = (Gewp R) p(2) volts, " (35)
where p(¢) = 0 can be assumed to be a pulse of duration T,=
1/W,, seconds satisfying

T
i »
'f—f p)de=1.
P Yo

The requirement (36) arises because the total charge in the
current pulse S(#)/R due to the single emitted electron must be
equal to Ge. Here G is of course the random PMT gain. We
assume that the amplified PMT output is monitored using a
pulse counter. Let W, = counter bandwidth and T, = 1/ W,=
counter response time. We assume that the counter bandwidth
W, is less than the PMT bandwidth W), so that

(36)

T,>T,

(37
The only degradation introduced by the PMT output amplifier
is assumed to be additive thermal noise. As a first approxi-
mation we model the counter as a short-term averager of its
input over the counter response time T, seconds followed by a
threshold comparator to determine whether a positive pulse
has occurred. So the PMT amplifier — pulse counter combina-
tion first introduces an independent additive white Gaussian
noise process V(¢) to the PMT output and then integrates the
PMT output signal plus V(z) process over T, seconds. The
result is first normalized by T, and then compared to a
decision threshold -y. An emission event is declared if and only
if this threshold is exceeded. This model is shown in Fig. 3.
Let H, be the hypothesis of the occurrence of an emission
event and H,, the null hypothesis. If X () is the PMT amplifier
output, then under

H: X@) = (e W,R)G p(t) + VI¢), (38)
Hy: X(t) = V() (39)

where V(¢) has spectral density
N, = k0 R (volts)? /Hz. (40)

Here k& = Boltzmann constant = 1.38 X 10723 watts/Hz-"K,
6 = amplifier noise equivalent temperature (°K) and R = ampli-
fier equivalent input resistance (assumed to be matched to the
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PMT anode load resistance). Let X be the normalized inte-
grator output: ’

1 (%
X =Tf X(¢) dr, 1)
¢ Jo
and denote
1 (%
V= T f V() dr. 42)
¢ Jo
So from (35) — (42), it follows that under
H:X=(eWR)G+V, 43)
Hy: X=7V, (44)

where V is a N(0, 02) random variable independent of G with
2
o® = N,IT, . (45)

In order to assess the performance of this pulse counter
detection of emission events, consider the probabilities:

P, = probability of correctly detecting an emission event
=P((eW,R)G+V>7) (46)

and
Pf = false alarm probability of declaring an emission event

when it actually was absent

P(V=7). 47

The statistics of the random PMT gain G are required to deter-
mine P,. We shall use the approximate density (32) for this
purpose. So it follows from (46) and (47) that

P. = Q(vl0), (48)

and

"
1]

a JMP[V>7'(€ W, R)x] pg(x) dx
0

oo v~ (e WCR)x
J; Q<—U——)PG(X) ax (49




where p-(x) is given by (32) and

o0

00 2 R g, (50)

\/__

The plot of P, versus Py determines the receiver operating
curve for this detection process. Figure 4 gives receiver operat-
ing curves for a 11-dynode PMT such as the RCA 31034 for
various values of average gain G when the counter bandwidth
W, and noise spectral density height NV, are fixed. The receiver
operating curves improve with increasing average gain G since
the average pulse height increases with G. Figure 5 shows
receiver operating curves for fixed G and N, for various
counter bandwidths W,. Here the receiver operating curves
improve with increasing W, since the average pulse height
increases linearly with W, while the noise standard deviation ¢
increases only according to \/W: .

IV. Error Performance of a
Binary Direct Detection
Communication System

In this section we consider a direct detection optical com-
munication system utilizing a PMT as a photodetector with a
binary signalling scheme in which the signalling time period is
divided into successive time slots of T seconds duration. A
" given slot is either a “noise slot”, in which case no incident
light from the transmitter light source is received at the PMT
cathode, or a “signal slot,” when incident light of constant
intensity from the transmitter is received. The problem of
concern here is to detect whether a given time slot is a signal
slot or a noise slot based on the amphﬁed PMT output in that
time slot.

We shall consider a receiver which integrates the amplified
PMT output during a slot time T, normalizes the integrator
output by the integration time 7', and compares the result to a
threshold . A signal slot is declared if and only if the thresh-
old is exceeded. The error performance of this simple binary
receiver shall be analyzed here.

A block diagram of this system is shown in Fig. 6. Let W{(¢)
be the additive white Gaussian noise process with spectral
density NV, given by (40) representing the thermal noise in the
amplifier. Suppose

N = number of electrons emitted at the photocathode
during the slot time [0, T}]

and {1,}¥, are the emission times of those N electrons. Also’

suppose the electron emitted at time ¢; undergoes a gain G;
through the PMT dynode chain. Since the PMT electron multi-

plication process operates independently on each electron
emitted at the cathode, the gain random variables G, are
mutually independent. So, similar to (38), the PMT amplifier
output process X(¢) is given by

N
X@) = @W,R) 3 Gp-t)+ V@), (51)
i=1

where p(z) is as before in (35). The number &V of cathode
emission events in the signal slot time can be assumed to be .
Poisson with intensity equal to the average number of electron
emissions per slot time. In a noise slot, electron emissions are
due to the PMT dark current, whereas in the signal slots they
are due to both dark current and received light excitation. In
particular, if H is the hypothesis of a signal slot and H,, is the
hypothesis of a noise slot, then

n

P(V = nlH) =— ¢ hn>0, (52)
where
0t2 = Nn
A
= average number of dark current cathode emissions
per time slot, (53)
o =N +N_, (549
and
]VS = average number of cathode emissions due to received
light excitation per signal time slot
P,
=3 7 (55)

In (55), n is the photocathode quantum efficiency, P is the
incident signal light intensity at the cathode surface, A is
Planck’s constant and f the incident light center frequency.

It is reasonable to assume that the slot time T is
greater than the PMT response time 7). Then, since the

detector statistic
1t (s
X == X(t)de,
T
s Jo

it follows from (36) and (51) that
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=(eR)ZG+V (56)

where ¥ is a N(0, 07) random variable with

N,
Ts . (57

<

2
b

In order to determine the receiver’s error perfor-
mance, the distribution of

~d
[t}
&

]
—

(58)

l
must be determined under each hypothesis /;. This requires
the PMT gain probability distribution, which is the common
distribution of all the random variables G; in (58). We shall use

the approximate density (32) here. First consider the mgf
oy(u|H;) of Y under H;:

0yl = B (1)

=E[E(e*wH)H]. (9

Let ¢ (u) be the mgf of each of the G 5. Then

= g™ (60)

So (52), (59) and (60) yield

n

Z [6o@)]" e K

=0

o (ulH) =

. -1]
_ ea,[¢G(u) _ 61)

Since we are using the density (32) as the density of each of
the G;s, ¢o(u) is taken to be the mgf (20) of (32). So using
(20) in (61) yields

([)Y(ulHi) - eai [e"A/B exp (lféi ) -1] - 62)
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Finally we shall invert the mgf (62) to obtain the probability
density p(vIH;) of Y under H; by using a technique similar to
(23) - (25). That is, rewrite (62) as

(e e“A/B)

n=0

A/B
o (222)

—A /B)

RS (_,_ [ > (a2
k=1

_(4/B)* 1

K (4B ©)

Next, similar to (25), (63) is inverted by using (24) to yield

n
-A/B_, - © (e 4/B)
_ 05( 1) 9 i
p,iH) = e () te rg o
Z ("A/Bz)k -t e YB | 64)
TGS
But, since
Z @A/BY Yl ym - ym A i
=1 K- yB?* k=0

(_;_ W)zkﬂ

!k + 1!

_ eVB Judly !
1

B

2)

(65)




(64) and (65) together yield the following expression for
Py (7 IH):

—(o;+y/B)
-A/B i 00
a(e ~1) Ay e
Py = ¢ sy + AE 5~

n=

n
Ve ()
1 ’

3 (66)

n!

where ¥ = 0. Further reduction of (66) to a closed form
expression does not appear to be possible.

The error performance of this binary communication sys-
tem is specified by

P, = probability of correctly detecting a signal slot

=P(X>IH)), (67)
and
P, = probability of correctly detecting a noise slot
= 1- P(X>H,) - ©9)
So from (56) - (58), (67) and (68) we have
po=[ p(rsq- (& P, WH,)d
as 2y AT V) AV
0 8
eR
[
_ N
0

pyOIH,)dy, (70)

where ¢, is given by (57) and py(y/H,) is given by (66) with
o, given by (53) and (54). Typical receiver operating curves of

Py, versus 1= P, are shown in Fig. 7 for various values of
signal counts &V, for fixed PMT average gain G, slot time 7',
thermal noise spectral height N, and dark current count N, .
The receiver operating curve can be seen to improve with
increasing NV, as expected.

V. Discussion

We have used a Markov diffusion approximation of the
PMT electron multiplication process to obtain an approximate
density for the PMT random gain. This approximate density
was subsequently used to determine the receiver operatihg
curve for a pulse counter detector of PMT cathode emission
events. It was also used for analyzing the error performance of
a simple on-off binary direct detection optical communication
system. These latter results are used elsewhere (Ref. 13) to
analyze the error performance of uncoded and coded PPM
direct detection optical communication systems employing a
PMT detector.

We have assumed here for simplicity that all the dynode
stages in the PMT have identical average gain. In some applica-
tions, the first dynode stage has a higher average gain than the
remaining stages, which have equal average gains. This is
achieved by applying a higher interdynode voltage between the
first two dynodes of the PMT. The methods in this paper can
be extended to obtain an approximate density for the overall
PMT gain in the situation as follows. Consider a v-stage PMT
with overall average gain G so that the first dynode stage
average gain is ;. Then the remaining »-1 dynode stages have
overall average gain equal to 5/u1 . Based on the assumptions
discussed in Section II, it can be seen that the overall PMT gain
has the same distribution as the number of collected anode
electrons for a (v-1)-stage PMT with average gain C'?—/u1 when
the number of cathode emissions is Poisson-distributed with
mean g, . Thus it follows from the results in Section IV that an
approximate density for the overall PMT gain in this case is
given by the density (66) with parameter &; = 4, and param-
eters A and B corresponding to the (v-1)-stage PMT with
overall average gain (_7_/;11. We note that for a PMT operated as
such with higher first dynode stage gain, the probability
density for the number of anode elections when the cathode
emissions are Poisson-distributed is no longer represented by
(66). However, the basic technique in Section IV can still be
extended to obtain this latter density although yielding a more
complex double series solution. It would be interesting to
investigate ways of simplifying this series solution.
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Fig. 3. Model for pulse
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counter detection of cathode emission events
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Fig. 4. Cathode emission event detection receiver operating curve as a
function of PMT gain
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Fig. 5. Cathode emission event detection receiver operating curve as a
function of counter bandwidth
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Fig. 6. Direct detection binary communication system
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